HERZ - Diaphragm Pressure Reducing Valve

© Dimensions in mm

- Construction

Body:
Upper part:
Diaphragm:
Spring:
Spring guide:
Sealing:
Round handle:
Filter:
Bottom cover:
Bottom cover:
Screw connection:
Sealing screw connection:

\square Specifications

Maximum inlet pressure:
Outlet pressure range:
Factory settings:
Maximum temperature:
Maximum temperature:
Manometer scale:
Mesh perforatio:
Medium:
Standard:
Pressure gauge connectors:
Connectors:
(DN 15-25) forged brass acc. to EN 12165; CW626N
(DN 32-50) casted brass acc. to EN 1982; CC770S
PA6.6
EPDM
spring steel
stainless steel
EPDM
PA 6.6, green
stainless steel
PA12, transparent (for articles 12682 1X)
Brass CW617N (for articles 12682 2X)
Brass CW617N
Klingersil C-432
16 bar
1,5-6 bar
3 bar
$40^{\circ} \mathrm{C}$ (for articles 12682 1X)
$70^{\circ} \mathrm{C}$ (for articles 12682 2X)
0-10 bar
0.3 mm
water
EN 1567
1/4" F (ISO 228-1)
external thread acc. to ISO 7-1 and ISO228

- Assembly

Before assembling rinse the system well. In potable water installations the pressure reducing valve is mounted behind the water meter. Install the pressure reducer in a horizontal position with the filter facing down. Take care of the flow direction, indicated on the housing. Proper operation requires a straight piece of at least $5 \times \mathrm{DN}$ pipe before and after the pressure reducer. The attached manometer can be mounted on both sides of the pressure reducer. Before and after the pressure reducer, it is necessary to install an isolating valve. Pressure regulator must be installed without any mechanical tensions in the pipeline, leaving enough space to check manometer and maintenance. In case of installing pressure regulator exposed to UV light or solvent vapours we recommend use brass filter cap.
A safety device, such as a safety valve I 0132 X 4 or an expansion tank, must always be provided on the pressurereduced side, as the pressure reducer acts like a backflow preventer and thus creates a closed system after it. Planners and executors have to be advised of the use of a safety device.

- Application and maintenance

The pressure reducing valve protects drinking water installations against over pressure (reduces input pressure to a working level). The outlet pressure is adjustable and does not vary with changes of the inlet pressure. The outlet pressure can be adjusted by turning the green handle. Turning the handle clockwise increases the outlet pressure. Turning above the stated values on the pressure reducer scale may damage the valve. We recommend the max. outlet pressure of 4 bar for private house installations (product long life, costs,...). After each new setting of the outlet pressure, the regulated pipe has to be opened and closed. We recommend maintenance by authorized installers according to DIN 1988. Check the filter condition in the regulator several times a year and, if it is necessary, clean or replace it with a new one. Tool for maintenance is included in every box of pressure reducer.
\square Spare Parts

Description	Item number	
	Prast for	
Brass cover	12682 27	

- Nominal flow rates standard EN 1567

Size	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50
Flow rate $\left[\mathbf{m}^{3} / \mathrm{h}\right]$	1,27	2,27	3,6	5,8	9,1	14
Flow rate $[1 / \mathrm{min}]$	21,16	37,83	60	96,66	151,66	233,33

QTrouble-shooting

Problem	Description	Solution
Increased downstream pressure	This problem is due to heating of the water caused by the water heater	- install an expansion tank
Increased downstream pressure	This problem is due to heating of the cold drink water caused by the room temperature	- install a safety valve I 0132 X4 or an expansion tank
Frozen	Valve exposed to temperatures below $0^{\circ} \mathrm{C}$	- replace valve
Manometer shows a lower pressure under flow conditions than set pressure at no flow	This is normal	- no action
Low flow rate, low downstream pressure	- filter blocked with debris -valve undersized	-clean or change filter cartridge -check valve caracterictis and use the right valve

Brass

HERZ uses top-quality brass that is in compliance with the UBA and 4MS lists. HERZ - membrane pressure reducer is made from brass due to its good strength and excellent corrosion resistance. Pursuant to Article 33 of the REACH Regulation (EC No. 1907/2006), we are obliged to point out that the material lead is listed on the SVHC list and that all brass components manufactured in our products exceed 0.1% (w / w) lead (CAS: 7439-92-1 / EINECS: 231-100-4). Since lead is a component part of an alloy, actual exposure is not possible and therefore no additional information on safe use is necessary.

©Disposal instruction

The disposal of HERZ - Drinking water manifolds systems must not endanger the health or the enviroment. National legal regulations for proper disposal of the HERZ - Drinking water manifolds systems have to be followed.

© Pressure drop diagram

$\Delta \mathrm{p}$ [bar]

Velocity of water

Please note: All specifications and information within this document are reflecting the information available at the time of going to print and meant for informational purpose only
Herz Armaturen reserves the right to modify and change products as well as its technical specifications and/or it function according to technological progress and requirements. All diagrams are indicative in nature and do not to be complete. It is understood that all images of Herz products are symbolic representations and therefore may visually differ from the actual product. Colours may differ due to printing technology
used. In case of any further questions don't hesitate to contact your closest HERZ Branch-Office

